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Abstract. How can we “scale down” an n-node network G to a smaller
network G′, with k � n nodes, so that G′ (approximately) maintains the
important structural properties of G? There is a voluminous literature
on many versions of this problem if k is given in advance, but one’s
tolerance for approximation (and the resulting value of k) will vary. Here,
then, we formulate a “rescalable” version of this approximation task for
complex networks. Specifically, we propose a node ordering version of
graph summarization: permute the nodes of G so that the subgraph
induced by the first k nodes is a good size-k approximation of G, averaged
over the full range of possible sizes k. We consider as a case study the
phonological network of English words, and discover two natural word
orders (word frequency and age of acquisition) that do a surprisingly
good job of rescalably summarizing the lexicon.

Keywords: Network summarization · Node ordering
Phonological networks

1 Introduction

At SIGGRAPH 2007, Shai Avidan and Ariel Shamir presented a remarkable
technique for “content-aware image resizing” [5]: shrink the size of an image
while preserving, to the greatest extent possible, its important visual qualities.
This problem can be solved crudely by simple cropping or rescaling, but Avidan
and Shamir’s approach is more subtle: they identify an ordering of the “seams”
(contiguous edge-to-edge paths through the image) from least important to most
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important. Their algorithm allows a user to shrink an image from n pixels on a
side to any size k ≤ n, with k chosen by the user in real time, by eliminating
the n − k least important seams.

What would it mean to perform an analogous “resizing” for a complex
network? Is there a meaningful way to shrink an n-node network to any size
k ≤ n, with k chosen on the fly by the user—say, ordering the nodes by
“representativeness”—while preserving important graph-theoretic qualities, so
that the graphs in the resulting nested sequence are “as much like” the original
as possible?

Approximating complex networks. When members of the complex-networks
community describe a network as “complex,” we seem to have in mind a fuzzy
constellation of properties, expecting the network to exhibit many of these
desiderata: e.g., “small-world” properties [49], a heavy-tailed degree distribu-
tion [12], community structure [17], and degree assortativity [38]. We probably
also expect the network to be “large.” (Despite the now-ostentatious attention to
Zachary’s Karate Club [51], few researchers would argue for it as a paradigmatic
complex network; how much complexity can 34 nodes admit?) For a variety of
reasons, though, the large size of a network can be problematic. This issue is
immediate in the sense of computational complexity—one cannot afford Ω(n2)
time on a billion-node social network—and it is even more of an issue if one
seeks some kind of real-world intervention.

With these sorts of motivations in mind, many researchers have performed
significant work on the task of taking a large complex network and performing
a type of lossy compression on it; that is, identifying some smaller graph (either
by deleting or aggregating nodes) that is a useful approximation to the original.
But this problem is difficult for a number of reasons: algorithms for the network
approximation problem itself often have running times that grow unfavorably
in the size of the full network; the resulting smaller network may vary widely
depending on the size of the desired subnetwork; and it is unclear as to the right
way to assess the quality of the smaller subnetwork. (See [1,33,34] and Sect. 3.)

The present work: node ordering as (rescalable) network summariza-
tion. The goal of these graph summarization algorithms is to preserve “inter-
esting” properties of the graph, while reducing the size of the graph as much
as possible. But a major challenge here—highlighted clearly by Liu et al. [34]—
is that what counts as “interesting” will differ from one researcher to another
(and, for that matter, so will what counts as “preserved”). And size-reduction
algorithms may well require us to precommit to the size of the desired smaller
network and to the network properties of interest, both of which may be unde-
sirable. (Though see [35].)

Here, we propose a task that embraces these differences in the desired level
of approximation: given a complex network G, we seek to identify an order
v1, v2, . . . , vn of the nodes of G such that the “prefix graph” for a given size
k—that is, the subgraph induced by the node set {v1, v2, . . . , vk}—is as close
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an approximation to G as possible, for any desired size k. We quantify success
for this Node Ordering Problem in both the sense of global statistics about the
graph, and local statistics about the importance of individual nodes in the full
graph and the subgraphs.

We will focus on a particular complex network as a case study for our discus-
sion: the phonological network, in which nodes correspond to words in a natural
language (here, English), and edges connect pairs of nodes whose pronunciations
differ by a single edit [4,43,47, e.g.]. We will describe some natural node order-
ings in this network, including two derived from external data sources—word
frequency and age of acquisition—that do a remarkably good job of “unkinking”
the phonological network, producing a nested sequence of graphs that reproduce
to a surprising extent the statistical properties of the lexicon as a whole.

2 The Node Ordering Problem: Approximating Degree

Our framework of successively approximating a graph via one-by-one additions
of nodes is quite broad; we could apply it with a variety of graph-theoretic
quantities, and also with a variety of ways to quantify the difference between two
graphs with respect to any particular quantity. But, to start, we will formalize
one specific version of the Node Ordering Problem, using what is perhaps the
simplest nontrivial way to compare graphs: the degree of the graphs’ nodes. Let
δ(u,G) be a function reporting the degree of the node u in any graph G.

Prefix graphs. First, we fix a bit of terminology. We are given an undirected
graph G = 〈V,E〉, called the full network. Denote by n = |V | the number of
nodes in G. We will refer to a permutation of the vertices π = π1, π2, . . . , πn as
a node ordering.

Any particular permutation π defines a sequence of n prefix networks, one
of each size between 1 and n; specifically, the k-node prefix network of G
under π is the subgraph of G induced by the nodes {π1, π2, . . . , πk}. (The
subgraph of G = 〈V,E〉 induced by a set A ⊆ V is the graph GA with
nodes A and containing all edges in E that join two nodes in A; that is,
GA = 〈A, {(u, v) ∈ E : u ∈ A and v ∈ A}〉.)

See Fig. 1 for a small example. (Note that, as always, the last prefix network
is the full network—i.e., in Fig. 1, we have G = G{1,2,3,4}.)

Measuring structural quality of a subnetwork. Any node ordering defines
a nested sequence of prefix graphs, starting with a single isolated node and end-
ing with G itself. We must now describe the objective function—i.e., how do
we assess the quality of a particular permutation? Our evaluation is guided by
three principles. First, we seek low discrepancy between the sequence of prefix
graphs and the full network (averaged over all n different prefix sizes). Sec-
ond, we measure discrepancy using relative error : if the prefix graph exhibits a
value x and the full network a value x∗, then we compute the error as |x−x∗|

x∗ .
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Third, we want to capture both global error (does the prefix graph have simi-
lar average statistics to the full network?) and local error (do those nodes that
appear in the prefix graph have similar statistics there as they do in the full
network?). In keeping with these principles, we define two notions of error:

Definition 1 (Global Error). For a prefix graph GA, the global (relative)
degree error is the relative error of the mean degree of GA compared to that of
G = 〈V,E〉:

global error of GA =

∣
∣
∣

1
|A| · [∑

v∈A δ(v,GA)
] − 1

|V | · [∑

v∈V δ(v,G)
]
∣
∣
∣

1
|V | · [∑

v∈V δ(v,G)
] .

Definition 2 (Local Error). For a prefix graph GA, the local (relative) degree
error is the mean relative error of each node in GA compared to G = 〈V,E〉,
averaged across all nodes present in GA:

local error of GA =
1

|A| ·
∑

v∈A

|δ(v,GA) − δ(v,G)|
δ(v,G)

. (1)

The errors for the prefix graphs for our small sample graph are also given in
Fig. 1.

Fig. 1. Consider the full network G with nodes {1, 2, 3, 4} and edges
{(1, 2), (2, 4), (1, 4)}, under the permutation 〈1, 2, 3, 4〉. First, we show the four
prefix graphs for this network under this permutation. Then, we show the stage-by-
stage local and global errors. (For example, node 2’s local error in G{1,2} is 0.5 because
it has degree 1 in G{1,2} and degree 2 in G, so its local error is |2 − 1| /2 = 0.5.) Note
that average global and local error are permutation dependent, so these values would
be different for a different ordering of the nodes.
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Fig. 2. A graph with 14 nodes and 14 edges, and
four different sets of four nodes whose induced graphs
exhibit all four combinations of high/low local error
and high/low global error.

Note that global and
local error measure differ-
ent things: low global error
corresponds to the density
of GA matching that of G,
while low local error cor-
responds to specific node
degrees in GA matching
their degrees in G. It is
possible for a graph GA

to have low global error
while simultaneously hav-
ing high local error (i.e.,
this graph maintains the
average degree of G, but
the average arises from
different local connections
among nodes in the two graphs), or vice versa. See Fig. 2.

Here, then, is the formal statement of our problem:

Definition 3 (Node Ordering Problem [Degree Version]). Given an
undirected graph G = 〈V,E〉, output the permutation of V that minimizes the
average total error (global + local), where the average is taken across all |V |
prefix graphs.

Although we have focused on degree as the node-level measure of interest,
all of our definitions apply for an arbitrary node-level function. Many other
measures are at least as interesting to consider as degree—but even this “simple”
measure will reveal some surprisingly complex and subtle network features.

3 Related Work

Here we will (nonexhaustively) highlight some of the work in the many areas
of related research. First, though, we note that our Node Ordering Problem
is fundamentally different from ranking the nodes by some kind of centrality
measure, in which the most important nodes appear earliest; rather, we are
trying to produce an order of the nodes that is “always” roughly as important
as the list as a whole; how good a node is to include next depends on which
nodes have already been selected.

Summarizing and sampling in networks. The most closely related body
of research—and also the most voluminous—studies algorithms to shrink large
complex networks. Closest is work on simplifying graphs through the removal
of nodes (or, less similarly, edges) [19,40,46]. There is also a great deal of work
on sampling graphs, in which one tries to choose a good set of representative
nodes from a large network on the fly, generally without knowing the full graph
[20,30,35,36,39]. The excellent surveys of Liu et al. [34], Lin et al. [33], and
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Ahmed et al. [1] describe much more of this line of work—beyond the highly
incomplete list cited here—including research on other kinds of graph compres-
sion (e.g., the aggregation of many nodes into supernodes) that are further afield
from our task.

Modeling the evolution of graphs. In Sect. 4, we examine how a particular
graph G evolves—namely, how the phonological network changes as we add
words, one by one, in the order that an average person learns them. When nodes
are ordered by arrival time, the prefix graphs form a flipbook of G’s temporal
evolution. Questions about how particular complex networks evolve over time are
well studied, ranging from the local (which new links will form, and when?) [8,
29,32] to the global (how will density and diameter change over time?) [31].
That work generally considers both nodes and edges arriving over time; here,
we “know the future” of the network—the edge (u, v) forms at precisely the
moment that the second of the two nodes arrives in the graph—so the kind of
graph evolution that we see is generally quite different from the changes studied
in this literature.

Graph drawing, minimum linear arrangement, and comparing permu-
tations with costs varying depending on position. Multiple computational
communities (from graph drawing to VLSI design) have considered the task of
ordering the nodes of a graph so that edges connect nodes at nearby positions
in the ordering. In the graph-drawing context, the resulting images are called
arc diagrams [37,48]; ordering nodes to minimize the total length of edges in an
arc diagram is called “minimum linear arrangement (MinLA)” [14,16], which is
NP-hard. (This problem is also similar to that of approximating a general metric
as a line [15].)

MinLA is a close match for our notion of local error. In MinLA, one seeks to
minimize

∑

(u,v)∈E |πu −πv|; here, the number of prefix graphs in which exactly
one of {u, v} appears is precisely |πu−πv|. But there are important differences: we
consider relative, not absolute, error, and we average error across all prefix graphs
rather than summing error over edges; a single node’s local error counts less when
there are more nodes in the ordering (because that cost is divided by a larger
population size). In most ordering problems, as in MinLA, the cost measure does
not depend on the location of any errors, though a few researchers have recently
studied scenarios that, like ours, penalize errors differently depending on where
the error sits [21,25].

4 Case Study: Word Recognition and the Phonological
Network

In this section, as a case study, we consider a particular medium-sized complex
network. Our network comes from the psycholinguistics literature on spoken-word
recognition [4,47]: nodes represent the words in the language, and we join two
words w and w′ by an edge if their pronunciations differ only by a single phone-
mic insertion, deletion, or substitution. For example, neighbors of cowl /kaUl/
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include scowl /skaUl/ (an insertion), owl /aUl/ (a deletion), and fowl /faUl/ (a
substitution). This network has many of the properties that we discussed previ-
ously: a giant component, small average path lengths, high clustering coefficients,
degree assortativity, etc. [4,43,47]. We obtained our list of words and pronunci-
ations from the English Lexicon Project [6]. We discarded words for which we
had no word frequency or age of acquisition data (see below) , and removed
homophones, keeping only the highest frequency word with each pronunciation.
The resulting graph Glex contains n = 30, 515 words, with an average degree
≈3.5.

Ordering nodes randomly. As a baseline, we begin with a random ordering
of the nodes of Glex . Figure 3 shows both global and local error rates for 16
random orderings of the words in Glex , as the fraction of nodes included in the
graph ranges from 0 to 100%. To calculate a single measure of the quality of
each order π, we compute the average error rates across all n prefix graph sizes
of π, resulting in a pair of numbers per ordering. (We calculate this average
approximately, averaging the error for prefix graphs of size 100, 200, . . . , n, and
round to the hundredths place.)

When the nodes are ordered randomly, we see a linear trend for both global
and local error, as we could expect. Let G[α] denote the prefix graph resulting
from including a random α-fraction of the nodes of Glex . The global error of G[α]
is the fraction by which G[α]’s average degree is lower than Glex ’s average degree;
in expectation, this fraction drops linearly with α. (A particular edge from Glex is
included in G[α] with probability ≈α2—both endpoints must appear in G[α]—so
G[α] will contain n ·α nodes and, on average, |E| ·α2 edges, and thus an average
degree of (2|E|α2)/(nα) = (2|E|/n) · α. The average degree of Glex is 2|E|/n.)
Average local error is similarly linear, though starting at about 0.7 instead of

Fig. 3. Global error (left) and local error (right) rates for 16 random orderings of
the words in the lexicon. In these orders, the average global error was always in
{0.49, 0.50, 0.51} (median = 0.50); local error was always 0.33 or 0.34 (median = 0.34).
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1.0: about 30% of the nodes in Glex are isolated (i.e., have no neighbors); these
nodes have zero local error at the very moment that they are added into the
graph.

Ordering nodes by network properties. To minimize local error for a node
u as quickly as possible, we want as many edges incident to u to appear in the
graph as soon after u in the order as possible. Adding nodes greedily by degree,
highest degree first, tends to achieve this goal, because Glex is assortative with
respect to degree. Thus ordering nodes by degree, breaking ties randomly, seems
promising. While this greedy-by-degree order is good for local error, though, it
does poorly with global error: the average degree rapidly shoots far above Glex ’s
3.5, and stays well above that target for almost all prefix sizes. Greedy-by-degree
ordering yields local error 0.10 and global error 1.19 (median across 16 different
random tiebreakers), substantially worse than the random ordering. (Note that
relative errors exceed one when the prefix graph’s average degree is more than
twice that of Glex .)

We find a similar effect when we order the nodes by closeness or betweenness
centrality : the most central nodes’ degrees are too high, and the global average
goes, and stays, too high (closeness global error 1.18, local 0.10; betweenness
global error 0.85, local 0.17). We could also greedily add nodes by degree, lowest
first; this strategy has an analogous problem, but with a persistently too-low
global average.

Ordering nodes by external properties. Indeed, it is hard to formulate a
network-theoretic property that would intuitively yield good performance. Some-
how we need a sequence of nodes in which we tend to add “regions” of the graph
at a similar time (so that newly added nodes’ local error drops quickly), while
also ensuring that those regions have nodes that are typical of the whole graph
(so that the global error stays low). Of course, one could explicitly select for these
desired properties—e.g., repeatedly greedily removing the node whose removal
increases total error by the least—but here we consider another option: ordering
the nodes by psycholinguistic properties that are, at least nominally, independent
of graph position:

– Frequency. We obtained word frequency counts for all the words in our lexicon
from the SUBTLEXUS corpus of 51 million words of American subtitles [9],
stored as frequency per million words.

– Age of acquisition. We used ratings of the age at which a given word was
learned, its age of acquisition (AoA), from Kuperman et al. [26]. These data
were obtained by adults retrospectively self-reporting the age at which they
learned a given word; the data are expanded so that w’s AoA is recorded
based on the “lemma” of w—e.g., endorsed is recorded as being acquired
at the same age as endorse. Despite the inherent limitations of such self-
reporting, Kuperman et al. [26] argue that these estimates accurately reflect
the order in which words were learned, and the data have proven predictive
in other psycholinguistic settings [10,13].
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Although higher frequency words tend to be acquired earlier, these two quantities
capture different phenomena, particularly for the lemma-expanded version of
AoA. Many pairs of words (29.5%) are inverted in the AoA vs. frequency orders
(e.g., water is early in both lists, watered is early AoA [because its lemma is
water ] but low frequency, and business is high frequency but acquired fairly
late).

Fig. 4. Global (left) and local (right) error rates for degree for three word orders:
random (green), frequency [high to low] (gold), and AoA [low to high] (blue). Frequency
has the lower global error and AoA the lower local error; both are better than random
in both measures.

The analogue to Fig. 3 for these two orderings is shown in Fig. 4. (We resolve
any ties in the ordering by randomizing, executing 16 distinct runs for each
measure.) We see notable improvement in the global error over the random
ordering: the average global error for frequency is 0.12, and for AoA is 0.17
(vs. 0.50 for random). For local error, the difference is less pronounced, but error
is still smaller than that for the random ordering: frequency’s average local error
is 0.29 and AoA’s is 0.21 (vs. 0.34 for random). Note that the points at which
AoA and frequency’s global error first hits zero, at ≈10% of the full graph, are
the points at which the prefix graphs’ average degree first exceeds Glex ’s average:
to the left of that point, the prefix graphs are too sparse; to the right, the prefix
graphs are too dense.

We also tried ordering the nodes by two other properties that are nominally
unrelated to network position: in increasing order of orthographic length (how
many letters are in the spelling of the word?) and phonological length (how many
phonemes are in the pronunciation of the word?). These orderings suffer from
the same problem as ordering by centrality: the fraction of possible k-phoneme
strings that are actually words decreases with k, so short words have many more



Node Ordering for Rescalable Network Summarization 75

neighbors than average; the global error for word-length orderings is quite high
(> 0.8) as a result.

Going beyond degree: clustering coefficient. Although we introduced it
strictly in the context of degree, we can consider versions of the Node Ordering
Problem for any node-level property. Here, we consider clustering coefficient :
the fraction of pairs of a node’s neighbors that are directly joined by an edge.
(Clustering coefficient of Glex has been studied in several psycholinguistic con-
texts [2,11,50].) See Fig. 5: frequency and AoA both vastly outperform random
ordering for global error, and are roughly comparable in local error. (Figure 5
shows that they achieve this local error in different ways, though: the random
ordering benefits from the fact that about 65% of words have degree ≤ 1, and
ergo clustering coefficient = 1. Frequency and AoA tend to do poorly on their
early prefix graphs, before overtaking the random ordering about a third of the
way through the graph.)

Fig. 5. Global (left) and local (right) error rates for clustering coefficient for words
ordered randomly (green), by decreasing frequency (gold), and increasing AoA (blue).
All other orders mentioned previously (degree, betweenness, closeness, and word length)
have worse average total error (global+local) than random (0.40+0.21); both frequency
(0.15 + 0.23) and AoA (0.32 + 0.22) are again better than random.
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5 Discussion and Future Directions

The task that we introduced in this paper is a broad one: order the nodes of a
given complex network in a permutation π such that the prefix graph induced by
{π1, π2, . . . , πk} is a good (global and local) approximation to the full network,
averaging over the possible values of k. There are, of course, a slew of ways to
measure the similarity of the prefix graph and the full network, many more than
the degree and clustering coefficient measures that we examined here. Under-
standing the extent to which a good node order for these two measures is also a
good node order for other key graph-theoretic properties is an obvious next step.
Many of the summarization and sampling algorithms for complex networks (see
Sect. 3) could potentially be adapted to this setting, too.

For any particular fixed node-level property, there is a natural greedy algo-
rithm that applies: starting from the full graph, repeatedly put at the end of
the node order that vertex whose removal increases total error by the least.
Hill-climbing algorithms could also be adapted fairly straightforwardly to this
setting. These approaches differ from the measure-agnostic view of the ordering
task that we have taken so far (we seek a node order that “in all important ways”
reproduces the full graph), but one may approach the problem from a measure-
specific perspective (see [35]). This style of algorithm may be computationally
prohibitive, though; incremental algorithms for the measure in question (e.g.,
[28,41]) are necessary, but not sufficient, to make the computation feasible.

Node ordering in the phonological network. The most salient fact from our
examination of the phonological network is that ordering words by frequency or
age of acquisition results in remarkably low error, both global and local, and that
these orderings outperform the random baseline in both degree and clustering
coefficient. Shorter words tend to appear early in these lists, and shorter words
tend to have higher degree—but both frequency and AoA outperform degree-
based and word-length–based orders for the nodes.

Why might AoA and frequency do such a good job in ordering the nodes
of the phonological network for degree and clustering coefficient? In part, it
seems, their success stems from a sense in which these word properties interpolate
between two competing goods: soon after a node u appears in the order, we
want to add many of u’s neighbors (so that u’s local error drops quickly), but we
must avoid too much BFS-style exhaustive exploration of a dense “community”
involving u (which would cause the global average, and thus the global error, to
spike).

These two successful orderings generally do some BFS-style exploration
around words as they are added: e.g., the frequency of write and an inflected
form like writes are quite similar—and their lemma-expanded AoAs are exactly
identical—so writes comes along soon after write. But AoA and frequency avoid
immediately flooding the immediate neighborhood: most phonological neighbors
of write are semantically (and thus morphologically) unrelated to writing, and
therefore would not generally have a particularly similar frequency or AoA to
write. (Note, then, that frequency is on the slightly more global side of the
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global/local tradeoff, and AoA is on the slightly more local side. This obser-
vation is consistent with their local and global error rates.) Ordering nodes by
degree does much worse than ordering by frequency, e.g., despite the positive
correlation between degree and frequency [27], the degree order is too local in
its exploration and thus suffers in global error.

Node ordering in other complex networks. There is a simple and more
basic observation implied by the good results of AoA and frequency in order-
ing the nodes of the phonological network: that there exists some ordering of
its nodes that “unkinks” its nodes in a way that leads to a sequence of good
approximations to the network as a whole. That observation may say some-
thing important about AoA and frequency—or it may say something important
about Glex . Indeed, “unkinkability” may point to some extraordinarily odd fea-
tures of the network. (Some recent research has begun to ask key questions
about whether graph-theoretic properties of Glex reflect interesting facts about
English, or whether they are simply an artifact of the way that the network is
constructed [18,42,44,45].)

Perhaps the most compelling direction for further research on the node order-
ing problem is this: is there any meaningful analogue to Age of Acquisition in
other kinds of complex networks? What happens if one tries to order the nodes
of, say, a social network instead?

Although the superficial processes are quite different, after some reflection
on the two just-discussed ways that node orders can perform poorly (being too
local or not being local enough), an analogy between AoA and “social influence”
begins to emerge. For example, in models of the spread of some behavior like the
adoption of some new technology, that behavior can fail to spread widely by being
too local (a small community adopts but it never spreads beyond that corner of
the graph) or by not being local enough (adopters are too far apart, leading to
isolated early adopters that have no common neighbors to jointly influence into
adopting). It is an interesting open question as to whether ordering nodes by their
order of adoption in, e.g., an Independent Cascade–style spread of behavior [22]
(or perhaps the “backbone” of a network’s systemic communication lines [24])
might yield good performance.

Indeed, there are several real-world phenomena that seem to exhibit complex,
high-dimensional behavior—and yet there is a way to unwind them into linear
orders that approximate them remarkably well. This is true of postal codes in the
United States, in which physical distance between locations is well approximated
by the numerical difference in ZIP codes [3,23]. It is also true of the web graph, in
which links can be represented very efficiently if the underlying graph is stored
with its nodes sorted lexicographically by URL [7]. Is there a way to linearly
order the nodes of a social network, or indeed any other complex network, in a
similar way?



78 V. Brown et al.

References

1. Ahmed, N., Neville, J., Kompella, R.: Network sampling: from static to streaming
graphs. ACM Trans. Knowl. Discov. Data (TKDD) 8(2), 7 (2014)

2. Altieri, N., Gruenenfelder, T., Pisoni, D.: Clustering coefficients of lexical neigh-
borhoods: Does neighborhood structure matter in spoken word recognition. Mental
Lex. 5(1), 1–21 (2010)

3. Arbesman, S.: The fractal dimension of ZIP codes. WIRED (2012)
4. Arbesman, S., Strogatz, S., Vitevitch, M.: The structure of phonological networks

across multiple languages. Int. J. Bifurc. Chaos 20(03), 679–685 (2010)
5. Avidan, S., Shamir, A.: Seam carving for content-aware image resizing. ACM

Trans. Graph. 26(3), 10 (2007)
6. Balota, D., et al.: The English Lexicon project. Behav. Res. Methods 39(3), 445–

459 (2007)
7. Boldi, P., Vigna, S.: The webgraph framework I: compression techniques. In:

WWW 2004
8. Brot, H., Muchnik, L., Goldenberg, J., Louzoun, Y.: Evolution through bursts:

network structure develops through localized bursts in time and space. Netw. Sci.
4(3), 293–313 (2016)

9. Brysbaert, M., New, B.: Moving beyond Kucera and Francis: a critical evaluation of
current word frequency norms and the introduction of a new and improved word
frequency measure for American English. Behav. Res. Methods 41(4), 977–990
(2009)

10. Brysbaert, M., Van Wijnendaele, I., De Deyne, S.: Age-of-acquisition effects in
semantic processing tasks. Acta Psychol. 104(2), 215–226 (2000)

11. Chan, K., Vitevitch, M.: The influence of the phonological neighborhood clustering
coefficient on spoken word recognition. J. Exp. Psychol. Hum. Percept. Perform
35(6), 1934–1949 (2009)

12. Clauset, A., Shalizi, C., Newman, M.: Power-law distributions in empirical data.
SIAM Rev. 51(4), 661–703 (2009)

13. Cortese, M., Khanna, M.: Age of acquisition predicts naming and lexical-decision
performance above and beyond 22 other predictor variables: an analysis of 2,342
words. Q. J. Exp. Psychol. 60(8), 1072–1082 (2007)

14. Devanur, N., Khot, S., Saket, R., Vishnoi, N.: Integrality gaps for sparsest cut and
minimum linear arrangement problems. In: STOC 2006

15. Dhamdhere, K.: Approximating additive distortion of embeddings into line metrics.
In: APPROX/RANDOM 2004

16. Feige, U., Lee, J.: An improved approximation ratio for the minimum linear
arrangement problem. Inf. Process. Lett. 101(1), 26–29 (2007)

17. Girvan, M., Newman, M.: Community structure in social and biological networks.
Proc. Natl. Acad. Sci. 99(12), 7821–7826 (2002)

18. Gruenenfelder, T., Pisoni, D.: The lexical restructuring hypothesis and graph the-
oretic analyses of networks based on random lexicons. J. Speech Lang. Hear. Res.
52(3), 596–609 (2009)

19. Hennessey, D., Brooks, D., Fridman, A., Breen, D.: A simplification algorithm for
visualizing the structure of complex graphs. In: INFOVIS 2008
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