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Tutorial

In many areas of experimental psychology, researchers 
collect data from participants responding to multiple tri-
als. This type of data has traditionally been analyzed 
using repeated measures analyses of variance (ANOVAs)—
statistical analyses that assess whether conditions differ 
significantly in their means, accounting for the fact that 
observations within individuals are correlated. Repeated 
measures ANOVAs have been favored for analyzing this 
type of data because using other statistical techniques, 
such as multiple regression, would violate a crucial 
assumption of many statistical tests: the independence 
assumption. This assumption states that the observations 
in a data set must be independent; that is, they cannot 
be correlated with one another. But take, for example, 
a reaction time study in which participants respond to 
the same 100 trials, each of which corresponds to a dif-
ferent item (e.g., a particular word in a psycholinguistics 
study). Reaction times within a given participant and 
within an item will certainly be correlated; some partici-
pants are faster than others, and some items are responded 
to more quickly than others. Given that observations are 
not independent, data in which participants respond to 

multiple trials must be analyzed with a statistical test 
that takes the dependencies in the data into account.

For this reason, when analyzing data in which obser-
vations are nested within participants, repeated measures 
ANOVAs are preferable to standard ANOVAs and multiple 
regression, which both ignore the hierarchical structure 
of the data. However, repeated measures ANOVAs are far 
from perfect. Although they can model either participant- 
or item-level variability (often referred to as F1 and F2 
analyses in the ANOVA literature), they cannot simulta-
neously take both sources of variability into account, so 
observations within a condition must be collapsed across 
either items or participants. When the data are aggre-
gated in this way, however, important information about 
variability within participants or items is lost, which 
reduces statistical power (see Barr, 2008), that is, the 
likelihood of detecting an effect if one exists.
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Another limitation of ANOVAs is that they deal with 
missing observations via listwise deletion; this means that 
if a single observation is missing, the entire case is deleted, 
and none of the observations from that individual (or 
item) will be used in the analysis. Depending on the num-
ber of complete cases in the data set, this can substantially 
reduce sample size, which leads to inflated standard error 
estimates and reduced statistical power (though the esti-
mates will be unbiased if the data are missing completely 
at random; see Enders, 2010). ANOVAs also assume that 
the dependent variable is continuous and the indepen-
dent variables are categorical; experiments in which the 
outcome is categorical (e.g., accuracy at identifying par-
ticular items in a recognition memory task) must be aggre-
gated or analyzed using a different technique, and 
continuous predictors (e.g., time in a longitudinal study) 
must be treated categorically (i.e., binned), which reduces 
statistical power and makes it difficult to model nonlinear 
relationships between predictors and outcomes (e.g., 
Liben-Nowell et al., 2019; Royston et al., 2005). A final 
drawback of ANOVAs is that although they indicate 
whether an effect is significant, they do not provide infor-
mation about the magnitude or direction of the effect; that 
is, they do not provide individual coefficient estimates for 
each predictor that indicate growth or trajectory.

Mixed-Effects Models Take the Stage

These shortcomings of ANOVAs and multiple regression 
can be avoided by using linear mixed-effects modeling 
(also referred to as multilevel modeling or mixed model-
ing). Mixed-effects modeling allows a researcher to 
examine the condition of interest while also taking into 
account variability within and across participants and 
items simultaneously. It also handles missing data and 
unbalanced designs quite well; although observations 
are removed when a value is missing, each observation 
represents just one of many responses within an indi-
vidual, so removal of a single observation has a much 
smaller effect in the mixed-modeling framework than in 
the ANOVA framework, in which all responses within a 
participant are considered to be part of the same obser-
vation. Participants or items with more missing cases 
also have weaker influences on parameter estimates (i.e., 
the parameter estimates are precision weighted), and 
extreme values are “shrunk” toward the mean (for more 
details on shrinkage, see Raudenbush & Bryk, 2002; 
Snijders & Bosker, 2012). Further, continuous predictors 
do not pose a problem for mixed-effects models (see 
Baayen, 2010), and the fitted model provides coefficient 
estimates that indicate the magnitude and direction of 
the effects of interest. Finally, the mixed-effects regres-
sion framework can easily be extended to handle a vari-
ety of response variables (e.g., categorical outcomes) 
via generalized linear mixed-effects models, and operat-
ing in this framework makes the transition to Bayesian 

modeling easier, as reliance on ANOVAs tends to create 
a fixed mind-set in which statistical testing and categorical 
“significant versus nonsignificant” thinking are paramount. 
Mixed-effects modeling is therefore appropriate in many 
cases in which standard ANOVAs, repeated measures 
ANOVAs, and multiple regression are not. Thus, it is a 
more flexible analytic tool.

Disclosures

The data and R script used to generate the models 
described in this article are available via OSF, at https://
osf.io/v6qag/.

Introducing the Data

In this Tutorial, I use examples from my own research 
area, human speech perception, but the concepts apply 
to a wide variety of areas within and beyond psychology. 
For example, participants in a social-psychology experi-
ment might view videos and be asked to evaluate the 
affect associated with each of them, or participants in a 
clinical experiment might read a series of narratives and 
be asked to describe the extent to which each of them 
generates anxiety.1 The goal of this Tutorial is to provide 
a practical introduction to linear mixed-effects modeling 
and introduce the tools that will enable you to conduct 
such analyses on your own. This overview is not intended 
to address every issue you may encounter in your own 
analyses, but is meant to provide enough information 
that you have a sense of what to ask if you get stuck. To 
help you along the way, I provide snippets of R code 
using dummy data that serve as a running example.

The example data I provide (see https://osf.io/
v6qag/), which we will work with later in this Tutorial, 
come from a within-subjects speech-perception study in 
which each of 53 participants was presented with 553 
isolated words, some in the auditory modality alone 
(audio-only condition) and some with an accompanying 
video of the talker (audiovisual condition). Participants 
listened to and repeated these isolated words aloud 
while simultaneously performing an unrelated response 
time task in the tactile modality (classifying the length 
of pulses that coincided with the presentation of each 
word as short, medium, or long). The response time data 
are based on data from a previous experiment of mine 
(Brown & Strand, 2019; complete data set available at 
https://osf.io/86zdp/), but the response times them-
selves have been modified for pedagogical purposes 
(i.e., to illustrate particular issues that you may encoun-
ter when analyzing data with mixed-effects models). The 
accuracy data have not been modified, but variables 
have been removed for simplicity.

Previous research has shown that being able to see as 
well as hear a talker in a noisy environment substantially 
improves listeners’ ability to identify speech relative to 

https://osf.io/v6qag/
https://osf.io/v6qag/
https://osf.io/v6qag/
https://osf.io/v6qag/
https://osf.io/86zdp/
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hearing the talker alone (e.g., Erber, 1972). The goals of 
this dual-task experiment were to determine whether 
seeing the talker would also affect response times in the 
secondary task (slower response times were taken as an 
indication of increased cognitive costs associated with 
the listening task—“listening effort”) and to replicate the 
well-known intelligibility benefit from seeing the talker. 
In what follows, we will use mixed-effects modeling to 
assess the effect of modality (audio-only vs. audiovisual) 
on response times and word intelligibility while simul-
taneously modeling variability both within and across 
participants and items. We will assume that modality was 
manipulated within subjects and within items, which 
means that each participant completed the task in both 
modalities, and each word was presented in both modal-
ities (but each word occurred in only one modality for 
each participant).

For all the analyses described below, we will use a 
dummy-coding (also referred to as treatment-coding) 
scheme such that the audio-only condition serves as the 
reference level and is therefore coded as 0, and the 
audiovisual condition is coded as 1. Thus, in the mixed-
effects models, the regression coefficient associated with 
the intercept represents the estimated mean response 
time in the audio-only condition (when modality = 0), 
and the coefficient associated with the effect of modality 
indicates how the mean response time changes in the 
audiovisual condition (when modality = 1). We could 
instead use the audiovisual condition as the reference 
level, in which case the intercept would represent the 
estimated mean response time in the audiovisual con-
dition (when modality = 0), and the modality effect 
would indicate how this estimate changes in the audio-
only condition (when modality = 1). Altering the cod-
ing scheme, either by changing the reference level or 
by switching to a different coding scheme altogether 
(e.g., sum or deviation coding, which involves coding 
the groups as −0.5 and 0.5 or −1 and 1 so the intercept 
corresponds to the grand mean) will not change the 
fit of the model; it will simply change the interpreta-
tion of the regression coefficients (but often leads to 

misinterpretation of interactions, as I discuss below; see 
Wendorf, 2004, for a description of various coding 
schemes).

The left side of Table 1 shows the first six lines of the 
data in the desired format: unaggregated long format. 
For a helpful tutorial on how to wrangle the data into 
this format, I recommend Wickham and Grolemund’s 
(2017) open-access textbook R For Data Science (Chap-
ter 12.3.1) and the tidyverse collection of R packages 
(Wickham et al., 2019). If you are following along with 
your own data, ensure that your data are in long format 
such that each row represents an individual observation 
(i.e., do not aggregate across either participants or items). 
Notice that in this half of the table, each of the first six 
rows corresponds to a different word (stim) presented 
to the same participant (PID). In contrast, for an ANOVA, 
the data frame would contain two rows per participant, 
one for each modality, and the value in the response time 
(RT) column for a given row would reflect the mean 
response time for all words presented to that individual 
in the indicated condition (right side of Table 1).

Fixed and Random Effects

Mixed-effects models are called “mixed” because they 
simultaneously model fixed and random effects. Fixed 
effects represent population-level (i.e., average) effects 
that should persist across experiments. Condition effects 
are typically fixed effects because they are expected to 
operate in predictable ways across various samples of 
participants and items. Indeed, in our example, modality 
will be modeled as a fixed effect because we expect that 
there is an average relationship between modality and 
response times that will turn up again if we conduct the 
same experiment with a different sample of participants 
and items.

Whereas fixed effects model average trends, random 
effects model the extent to which these trends vary 
across levels of some grouping factor (e.g., participants 
or items). Random effects are clusters of dependent data 
points in which the component observations come from 

Table 1. First Six Rows of the Example Data Set in Unaggregated and 
Aggregated Formats

Unaggregated data set Aggregated data set

PID modality stim RT PID modality RT

301 Audio-only gown 1024 301 Audio-only 1027
301 Audio-only might 838 301 Audiovisual 1002
301 Audio-only fern 1060 302 Audio-only 1047
301 Audio-only vane 882 302 Audiovisual 1043
301 Audio-only pup 971 303 Audio-only 883
301 Audio-only rise 1064 303 Audiovisual 938

Note: PID = participant identification number; stim = stimulus; RT = response time.
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the same higher-level group (e.g., an individual partici-
pant or item) and are included in mixed-effects models 
to account for the fact that the behavior of particular 
participants or items may differ from the average trend. 
Given that random effects are discrete units sampled from 
some population, they are inherently categorical (Winter, 
2019). Thus, if you are wondering if an effect should be 
modeled as fixed or random and it is continuous in 
nature, be aware that it cannot be modeled as a random 
effect and therefore must be considered a fixed effect. In 
our hypothetical experiment, participants and words are 
modeled as random effects because they are randomly 
sampled from their respective populations, and we want 
to account for variability within those populations.

Including random effects for participants and items 
resolves the nonindependence problem that often 
plagues multiple regression by accounting for the fact 
that some participants respond more quickly than others, 
and some items are responded to more quickly than 
others. These random deviations from the mean response 
time are called random intercepts. For example, the 
model may estimate that the mean response time for 
some condition is 1,000 ms, but specifying by-participant 
random intercepts allows the model to estimate each 
participant’s deviation from this fixed estimate of the 
mean response time. So if one participant tended to 
respond particularly quickly, that person’s individual 
intercept might be shifted down 150 ms (i.e., the esti-
mated intercept would be 850 ms). Similarly, including 
by-item random intercepts enables the model to estimate 
each item’s deviation from the fixed intercept, reflecting 
the fact that some words tend to be responded to more 
quickly than others. In multiple regression, in contrast, 
the same regression line (both intercept and slope) is 
applied to all participants and items, so predictions tend 
to be less accurate than in mixed-effects regression, and 
residual error tends to be larger. Thus, in mixed model-
ing, the fixed-intercept estimate represents the average 
intercept, and random intercepts allow each participant 
and item to deviate from this average.2 These devia-
tions are assumed to follow a normal distribution with 
a mean of zero and a variance that is estimated by the 
model.

An additional source of variability that mixed-effects 
models can account for comes from the fact that a vari-
able that is modeled as a fixed effect may actually have 
different influences on different participants (or items). 
In our example, some participants may show very small 
differences in response times between the audio-only 
and audiovisual conditions, and others may show large 
differences. Similarly, some words may be more affected 
by modality than others. To model this type of variability, 
we will include random slopes in the model specification. 
In our hypothetical study, the model may estimate that 
the effect of modality is 83 ms—meaning that participants 

were, on average, 83 ms slower in the audiovisual condi-
tion than the audio-only condition—but one participant 
may have been very strongly affected by modality (e.g., a 
response time difference between modalities of 200 ms), 
and another may have been only weakly affected by 
modality (e.g., a response time difference between 
modalities of 10 ms). These individual deviations from 
the average modality effect are modeled via random 
slopes (note that a simple mean difference like the one 
described here is represented in a regression equation 
as a slope).

It may be confusing that modality comes up in the 
context of fixed and random effects, but recall that an 
effect is considered fixed if it is assumed that the effect 
would persist in a different sample of participants. In 
our case, modality is modeled as a fixed effect because 
we are modeling the common influence of modality on 
response times across participants and items. However, 
given that participants represent a random sample from 
the population of interest, the effect of modality within 
participants represents a subset of possible ways modal-
ity and participants can interact. In other words, modal-
ity itself is not a random effect, but the way it interacts 
with participants is random, and including random 
slopes for modality allows the model to estimate each 
participant’s deviation from the overall (fixed) trend. 
(For more on the distinction between fixed and random 
effects and a description of when a researcher may actu-
ally want to model participants as a fixed effect, see 
Mirman, 2014).

One question people often have at this point is, if 
mixed-effects models derive an intercept and slope esti-
mate for each participant, why are these seemingly sys-
tematic effects called random effects? The answer is that 
although an effect might be consistent within a particular 
individual (e.g., one participant may systematically 
respond more quickly and be less affected by modality 
than average), the source of this variability is unknown 
and is therefore considered random. If you find yourself 
stumbling over the use of the word random, it may be 
helpful to instead consider the synonymous terminology 
by-participant (or -item) varying intercepts (or slopes). 
However, given that these effects are most commonly 
referred to as random intercepts and slopes, I use that 
terminology here.

Visualizing Random Intercepts and Slopes

In this section, I provide plots to help you visualize what 
happens when one builds on ordinary regression by 
introducing random intercepts and random slopes. These 
plots are derived from fake data from four hypothetical 
participants who each responded to four items (note 
that random effects really should have at least five or 
six levels, and having more levels is preferable; e.g., 
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Bolker, 2020). The effect of interest is the influence of 
word difficulty on response times (where 0 represents 
“very easy” by some collection of criteria, such as the 
frequency with which the word occurs in the language 
and the number of similar-sounding words, and 10 rep-
resents “very difficult”). First, consider a model with no 
random effects (i.e., fixed-effects-only regression; Fig. 
1). More difficult words tend to elicit slower response 
times, but because there are no random effects, the 
model estimates are the same for every participant; that 
is, although you can tell which points in the plot cor-
respond to each participant because I have represented 
data from each participant with a different shape, the 
model does not have access to this information. Further, 
given that this model predicts just one regression line 
that applies to all observations, the residual error (rep-
resented by vertical lines connecting every point to the 
regression line) is relatively large.

Next, consider a model that includes random inter-
cepts for participants. In Figure 2, each dashed gray line 
depicts model predictions for a single participant, and 
the solid black line depicts the estimates for the average 
(fixed) effects. This model takes into account the fact 
that some participants tend to have slower response 
times than others. Here, the overall effect of word dif-
ficulty on response times is still apparent, but this model 
does a better job predicting response times for a given 
participant because it allows for each participant to have 
a different intercept (representing the predicted response 

time for a word with a 0 on the difficulty scale). In this 
example, the relationship between word difficulty and 
response time is equally strong for all participants (i.e., 
the slope is fixed); random intercepts simply shift each 
participant’s regression line up or down depending on 
that individual’s deviation from the mean (see Winter, 
2019, p. 237, for another way of visualizing random 
intercepts, via a histogram of each individual’s deviation 
from the population intercept). Notice that the residual 
error, indicated by the vertical lines, is substantially 
smaller in the random-intercepts model relative to the 
fixed-effects-only model. Indeed, the residual standard 
deviation in the original model is 410 ms, but it is 
reduced to 275 ms in the random-intercepts model 
(these values are obtained via the summary() com-
mand in R). This is because we have considered the fact 
that each participant’s intercept can vary from the aver-
age intercept, so residual error represents deviation from 
a specific participant’s regression line rather than the 
overall regression line.

Figure 3 shows how the model changes when by-
participant random slopes are included; this model 
allows for the relationship between word difficulty and 
response time to vary across participants. Here, partici-
pants differ not only in how quickly they respond when 
word difficulty is 0 (random intercepts), but also in the 
extent to which they are affected by changes in word 
difficulty (random slopes). Although the general trend 
that difficult words are responded to more slowly is still 
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Fig. 1. Fixed-effects-only regression line depicting the relationship between word dif-
ficulty and response time. The plotted points represent individual response times for 
each word for each participant, and the vertical lines represent the deviation of each 
point from the line of best fit (i.e., residual error). Note that although you can discern 
the nested nature of the data from this plot because each participant’s data are repre-
sented by a different shape, the model does not take such dependencies in the data 
into account. For visualization purposes, data from the four participants for each word 
have been jittered horizontally to avoid overlap.
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Fig. 2. Mixed-effects regression lines depicting the relationship between word difficulty 
and response time, generated from a model including by-participant random intercepts 
but no random slopes. Each dashed gray line represents model predictions for a single 
participant, and the solid black line represents the fixed-effects estimates for the intercept 
and slope. The plotted points represent individual response times for each word for each 
participant, and the vertical lines represent the deviation of each point from the participant’s 
individual regression line. Notice that including random intercepts reduces residual error 
relative to the error in the fixed-effects-only model (Fig. 1). For visualization purposes, data 
from the four participants for each word have been jittered horizontally to avoid overlap.
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Fig. 3. Mixed-effects regression lines depicting the relationship between word difficulty and 
response time, generated from a model including by-participant random intercepts as well 
as by-participant random slopes for word difficulty. Each dashed gray line represents model 
predictions for a single participant, and the solid black line represents the fixed-effects esti-
mates for the intercept and slope. The plotted points represent individual response times for 
each word for each participant, and the vertical lines represent the deviation of each point 
from the participant’s individual regression line. Notice that including random slopes reduces 
residual error relative to the error in both the random-intercepts model and the fixed-effects-
only model (Figs. 1 and 2). For visualization purposes, data from the four participants for 
each word have been jittered horizontally to avoid overlap.



An Introduction to Mixed-Effects Modeling 7

apparent, the strength of this relationship varies across 
participants. The result is that the residual error is even 
smaller because each regression line is tailored to the 
individual; indeed, the residual standard deviation has 
decreased from 275 ms in the random-intercepts model 
to 75 ms in the random-slopes model. Note that for 
simplicity, these plots do not take item-level variability 
into account. (See Barr et al., 2013, for a helpful visual-
ization depicting the simultaneous influences of partici-
pant and item random effects.)

Correlations Among Random Effects

The discussion of mixed-effects models thus far has 
focused on fixed effects, random intercepts, and random 
slopes, but the models estimate additional parameters 
that are often overlooked: correlations among random 
effects. For example, when you specify that a model 
should include by-participant random intercepts and 
slopes for modality, the model will also estimate the 
correlations among those random intercepts and slopes. 
Although experimental psychology typically focuses on 
fixed effects, correlations among random effects can 
provide useful information about individual differences 
in condition effects.

Suppose, for example, that in our hypothetical dual-task 
experiment, the correlation between the by-participant 
random intercepts and slopes was negative (e.g., r = 
−.17). This would suggest that individuals who have 
higher intercepts (i.e., slower response times in the 
audio-only condition) tend to have lower slopes. Inter-
preting what “lower” means in the context of our experi-
ment also requires knowledge of the direction of the 
modality effect. If the modality effect is positive, then 
“lower slopes” means slopes that are less positive (i.e., 
closer to zero), and the correlation therefore suggests 
that individuals with slower response times are less 
affected by the modality manipulation. If, however, the 
modality effect is negative, then “lower slopes” means 
slopes that are more negative, which suggests that indi-
viduals with slower response times tend to be more 
affected by the condition manipulation.

If the modality effect is 83 ms, a negative correlation 
between by-participant random intercepts and slopes 
would indicate that individuals who had slower response 
times in the audio-only condition tended to show a less 
pronounced slowing in the audiovisual condition. One 
interpretation of this correlation is that people who 
respond more slowly are completing the task more care-
fully, and this slow, deliberate responding washes out 
the condition effect in those individuals. Although this 
correlation is not of particular interest in this experi-
ment, there are situations in which correlations among 
random effects are key to the research question. For 
example, a researcher conducting a longitudinal study 
might be interested in whether students’ baseline 

mathematical abilities are related to the trajectory of 
their improvement over the course of a training pro-
gram, so the correlation between by-participant random 
intercepts and slopes for the training effect would be 
of particular interest.

Another reason for examining correlations among 
random effects is that they can be informative about 
possible ceiling or floor effects. Consider the intelligibil-
ity effect I described when I introduced the data: Seeing 
the talker improves speech intelligibility. A negative cor-
relation between by-participant random intercepts and 
slopes for modality in this case would indicate that indi-
viduals with higher intercepts (i.e., better speech identi-
fication in the audio-only condition) had shallower slopes 
(i.e., benefited less from seeing the talker)—a correlation 
that would also emerge if the speech-identification task 
was too easy. That is, if participants could attain a high 
level of performance without seeing the talker, then 
seeing the talker would have little effect on perfor-
mance; this would result in a negative correlation 
between by-participant random intercepts and slopes, 
but only because ceiling effects prevented the modality 
effect from emerging in some individuals (see Winter, 
2019, p. 239, for another example of random-effects 
correlations that may indicate the presence of ceiling 
effects). Thus, even if your research question primarily 
concerns fixed effects, examining random effects and 
their correlations will help you understand your data 
more deeply.

Which Random Effects Can You Include?

Before we move on to implementation in R, it is impor-
tant to note one other issue regarding random-effects 
structures in mixed-effects modeling: deciding which 
random slopes are justified by your design. Consider 
again the example in which we modeled response times 
to words as a function of their difficulty. Word difficulty 
was manipulated within subjects, but because the words 
differed on an intrinsic property—namely, their difficulty—
word difficulty was a between-items variable. Given that 
by-item random slopes account for variability across 
items in the extent to which they are affected by the 
predictor of interest, we cannot model the effect of word 
difficulty on a particular item because each word has 
only one level of difficulty; that is, we cannot include 
by-item random slopes.3 In contrast, if the predictor of 
interest was a within-items variable (as in our running 
example in which all words appeared in both the audio-
only and the audiovisual conditions), we could include 
by-item random slopes for that predictor in our model, 
which would account for the fact that different words 
may be differently affected by the predictor. Put simply, 
by-participant and by-item slopes are justified only for 
within-subjects and within-items designs, respectively. 
Thus, our random-effects structure in the word-difficulty 
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example can include random intercepts for both partici-
pants and items, as well as by-participant random slopes 
for word difficulty, but cannot include by-item random 
slopes for word difficulty.

Because including by-item random slopes for word 
difficulty would not be justified in this example, the 
random-effects structure including random intercepts 
for both participants and items, as well as by-participant 
random slopes for word difficulty, would represent the 
maximal random-effects structure justified by the 
design (see Barr et al., 2013; Matuschek et al., 2017). 
In cases in which by-participant and by-item random 
slopes are justified, mixed-effects models can incorpo-
rate the simultaneous influences of both participant 
and item random slopes (but note that just because 
you can include a random effect does not necessarily 
mean that it would be advisable to do so. I discuss this 
further in the Model Building and Convergence Issues 
section).

Examples and Implementation in R

Now that you have a conceptual understanding of what 
mixed-effects models are and why they are useful, let 
us consider how to implement them in R. First, you will 
need to install R (R Core Team, 2020) and then RStudio 
(RStudio Team, 2020), a programming environment that 
allows you to write R code, run it, and view graphs and 
data frames all in one place. I suggest working in RStudio 
rather than R (though this is not a rule, and some people 
code in the R console without RStudio). Base R (the set 
of tools that is built into R) has a host of functions, but 
to create mixed-effects models you will need to install a 
specific package called lme4 (Bates et al., 2020). Packages, 
also referred to as libraries, are sets of functions that 
work together and are not already built into Base R. To 
install lme4, run the following line of code (you should 
run this line of code only if you have not already installed 
the package):

> install.packages("lme4")

Once the package is installed, it is always on your 
computer, and you will not need to run that line of code 
again. Whenever you want to create mixed-effects mod-
els, you will need to load the installed package, which 
will give you access to all the functions you need (you 
need to rerun this line of code every time you start a 
new R session). The following line of code will load the 
lme4 package:

> library(lme4)

In this section, I assume rudimentary knowledge of 
R. If you are new to R, I recommend installing and 
loading the swirl package (Kross et al., 2020), which 
serves as an introduction to R that can be completed 
in R itself.

Analyzing data with a continuous 
outcome (response time)

Now we can start building some models. For these exam-
ples, which I conducted in R Version 4.0.3 with lme4 
Version 1.1-26, I used the hypothetical data set intro-
duced earlier to assess whether seeing the talker affects 
response times to a secondary task and word intelligibil-
ity. I used a dummy-coding scheme with the audio-only 
condition as the reference level. To follow along, go to 
https://osf.io/v6qag/ and navigate to the R Markdown4 
file called “intro_to_lmer.Rmd.”

Model building and convergence issues. The basic 
syntax for mixed-effects modeling for an experiment with 
one independent variable and random intercepts but no 
random slopes for (crossed)5 participants and items is

>  lmer(outcome ~ 1 + predictor + 
(1|participant) + (1|item), data = data)

The portions in the interior sets of parentheses are the 
random effects, and the portions not in these parenthe-
ses are the fixed effects. The vertical lines within the 
random-effects portions of the code are called pipes, 
and they indicate that within each set of parentheses, 
the effects to the left of the pipe vary by the grouping 
factor to the right of the pipe. Thus, in this example, the 
intercept (indicated by the 1) varies by the two grouping 
factors in this experiment: participants and items. Note 
that the 1 is optional in the fixed-effects portion of the 
model specification because the fixed intercept is 
included by default, but it is not optional in the random-
effects portions because there must be some indication 
about which effects are allowed to vary by each group-
ing factor (i.e., the region to the left of the pipe cannot 
be left blank). I recommend always labeling intercepts 
with a 1 in both the fixed- and the random-effects por-
tions of the model specification to avoid any confusion 
about when the 1 must be included. Finally, the data 
argument indicates the name of the R object containing 
the data, and the lmer part is the function that builds 
a mixed-effects model (which you can access because 
you installed the lme4 package).

The model thus far includes random intercepts but 
no random slopes. However, my experience in speech-
perception research leads me to expect that both par-
ticipants and words might differ in the extent to which 
they are affected by the modality manipulation. We will 
therefore fit a model that includes both by-participant 
and by-item random slopes for modality. Failing to 
include random slopes would amount to assuming that 
all participants and words respond to the modality effect 
in exactly the same way, which is an unreasonable 
assumption to make. Although the model including by-
participant and by-item random intercepts and slopes 
reflects the maximal random-effects structure justified 

https://osf.io/v6qag/
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by the design, the decision to include by-participant and 
by-item random slopes is also theoretically justified. 
Theoretical motivation should always be considered, as 
blind maximization can lead to nonconverging models 
and a loss of statistical power (Matuschek et al., 2017). 
Notice how the basic syntax for the model changes when 
we include by-participant and by-item varying slopes in 
the random-effects structure:

>  lmer(outcome ~ 1 + predictor +  
(1 + predictor|participant) + (1 + 
predictor|item), data = data)

Here, the portions in parentheses indicate that both the 
intercept (indicated by the 1, which in this case is 
optional because it is implied by the presence of random 
slopes but is included for clarity) and the predictor (indi-
cated by + predictor) vary by participants and items. 
In plain language, this syntax means “predict the out-
come from the predictor and the random intercepts and 
slopes for participants and items, using the data I 
provide.”6

The model above includes only one predictor, but if 
a model includes multiple predictors the researcher may 
decide which of the predictors can vary by participant 
or item; in other words, any fixed effect to the left of 
the interior parentheses can be included to the left of 
the pipe (inside the interior parentheses), provided that 
including it is justified given the design of the experi-
ment. For example, if we wanted to include a second 
predictor that varied within both participants and items, 
but there was no theoretical motivation for including 
by-item random slopes for the second predictor—or, 
alternatively, if the second predictor varied between 
items, so including the by-item random slope would not 
be justified given the experimental design—the syntax 
would look like this:

>  lmer(outcome ~ 1 + predictor1 +  
predictor2 + (1 + predictor1 + 
predictor2|participant) + (1 + 
predictor1|item), data = data)

In the example we will be working with, the full 
model (i.e., the model including the fixed effects of 
interest and all theoretically motivated random effects) 
is specified as follows:

>  rt_full.mod <- lmer(RT ~ 1 +  
modality + (1 + modality|PID) +  
(1 + modality|stim), data = rt_data)

Here, we are predicting response times (RT) on the basis 
of the fixed effects for the intercept (1) and modality 
(audio-only vs. audiovisual condition), we are including 
random intercepts and slopes for both participants 
(PID = participant identification number) and words 

(stim = stimulus), and we are telling R to use the data 
frame called rt_data.7 Also note that this line of code 
includes the <- operator. This is used to assign a name 
to an object (a data structure with specific attributes that 
is stored in R’s memory) and save it for later. Thus, with 
this line of code we have created a model and given it 
an intuitive name so that we know what that object 
represents later on.

If you run this line of code in the R script, you may 
notice that you get a warning message saying that the 
model failed to converge. Linear mixed-effects models 
can be computationally complex, especially when they 
have rich random-effects structures, and failure to con-
verge basically means that a good fit for the data could 
not be found within a reasonable number of iterations 
of attempting to estimate model parameters. It is impor-
tant never to report the results of a nonconverging 
model, as the convergence warnings are an indication 
that the model has not been reliably estimated and there-
fore cannot be trusted.

When a model fails to converge, you as the researcher 
have several options, and this is a situation potentially 
introducing researcher degrees of freedom—the numer-
ous seemingly innocuous choices made during the 
research process that enable researchers to find “‘statisti-
cally significant’ evidence consistent with any hypoth-
esis” (Simmons et al., 2011, p. 1359). As a general rule, 
you should consider which random effects are theoreti-
cally important to include in your model beforehand, 
using knowledge of your particular domain and previous 
research (e.g., ask yourself the question, “Does it make 
sense for modality to vary by participants or by items?”), 
and remove random effects only if all other ways of 
addressing convergence issues have been unsuccessful. 
If you must remove a random effect, this decision should 
be documented and reported in your published manu-
scripts and/or accompanying code.

The first step you should take to address convergence 
issues is to consider your data set and how your model 
relates to it, and to ensure that your model has not been 
misspecified (e.g., have you included by-item random 
slopes for a predictor that does not actually vary within 
items?). It is also possible that the convergence warnings 
stem from imbalanced data: If you have some partici-
pants or items with only a few observations, the model 
may encounter difficulty estimating random slopes, and 
those participants or items may need to be removed to 
enable model convergence. Although attempting to 
resolve convergence issues can feel like a hassle, keep 
in mind that these warnings serve as a friendly reminder 
to think deeply about your data and not model with your 
eyes closed. Assuming you have done this, the next step 
is to add control parameters to your model, so that you 
can tinker with the nuts and bolts of estimation. There 
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are many control parameters, and depending on the 
source of the convergence issues, some may be more 
appropriate or useful than others. The one I recommend 
starting with is adjusting the optimizer (i.e., the method 
by which the model finds an optimal solution). The 
model specification below is identical to the one above, 
with the exception that it includes a control parameter 
that explicitly specifies the optimizer:

>  rt_full.mod <- lmer(RT ~ 1 + modality +  
(1 + modality|PID) + (1 + 
modality|stim), data = rt_data,  
control = lmerControl(optimizer = 
"bobyqa"))

This model converges, but how did I know which 
optimizer to choose? And what if the model had not 
successfully converged with that optimizer? When it 
comes to selecting an optimizer, I highly recommend 
the all_fit() function from the afex package (Sing-
mann et al., 2020). This function takes a model as input, 
refits the model with a variety of optimizers, and lets 
you know which ones produce warning messages. This 
package integrates nicely with lme4, so the model syntax 
need not be changed before running the function. Here 
is the relevant code and abbreviated output:

> all_fit(rt_full.mod)
bobyqa. : [OK]
Nelder_Mead. : [OK]
optimx.nlminb : [OK]
optimx.L-BFGS-B : [OK]
nloptwrap.NLOPT_LN_NELDERMEAD : [OK]
nloptwrap.NLOPT_LN_BOBYQA : [OK]
nmkbw. : [OK]

This output indicates that none of the optimizers tested 
led to convergence warnings or singular fits, both of 
which are indicative of problems with estimation. Thus, 
any of these optimizers should produce reliable param-
eter estimates.

In this example, our model converged when we 
changed the optimizer, but this will not always be the 
case, and you may sometimes need to address conver-
gence issues in another way.8 One option is to force the 
correlations among random effects to be zero. Recall 
that in addition to estimating fixed and random effects, 
mixed-effects models estimate correlations among ran-
dom effects. If you are willing to accept that a correlation 
may be zero,9 this will reduce the computational com-
plexity of the model and may allow the model to con-
verge on parameter estimates. Note, however, that it is 
advisable to conduct likelihood-ratio tests (described in 
detail in the next subsection) on nested models differing 
in the presence of the correlation parameter—or examine 
the confidence interval around the correlation—to 

determine whether elimination is warranted. To remove 
a correlation between two random effects in R, simply 
put a 0 where the 1 was in the random-effects specifica-
tion. When you do this, however, the lmer() function 
no longer estimates the random intercept, so you need 
to be sure to put it back into the model specification. 
Here is what the code would look like if you wanted to 
remove the correlation between the random intercept 
for participants and the by-participant random slope for 
modality:

>  rt_full.mod <- lmer(RT ~ 1 + modality +  
(0 + modality|PID) + (1|PID) + (1 + 
modality|stim), data = rt_data)

Other ways to resolve convergence warnings include 
increasing the number of iterations before the model 
“gives up” on finding a solution (e.g., control = 
lmerControl(optCtr = list(maxfun = 1e9))), 
centering or scaling continuous predictors (or sum-
coding categorical predictors), or removing some of 
the derivative calculations that occur after the model 
has reached a solution using the following control param-
eter: control = lmerControl(calc.derivs = 
FALSE). I also suggest typing ?convergence into the 
R console, which will open a help file offering other 
recommendations for resolving convergence warnings.

Finally, it may be that a model fails to converge simply 
because the random-effects structure is too complex 
(Bates, Kliegl, et al., 2015). In this case, one can selec-
tively remove random effects based on model selection 
techniques (Matuschek et al., 2017). It is important to 
reiterate, however, that simplification of the random-
effects structure should only be done as a last resort, and 
these decisions should be documented—the random-
effects structure should be theoretically motivated, so it is 
best to try to maintain that structure unless all other meth-
ods of addressing convergence issues are unsuccessful.

Likelihood-ratio tests. Now that we have a model to work 
with, how do we determine if modality actually affected 
response times? This is typically done by comparing a model 
including the effect of interest (e.g., modality) with a model 
lacking that effect (i.e., a nested model) using a likelihood-
ratio test.10 This test is used to compare two nested models 
by calculating likelihoods for the two models using a tech-
nique called maximum likelihood estimation and then statis-
tically comparing those likelihoods. If you obtain a small  
p value from the likelihood-ratio test, this indicates that the 
full model provides a better fit for the data.

When we run a likelihood-ratio test for our example, 
we are basically asking, does a model that includes 
information about the modality in which words are pre-
sented fit the data better than a model that does not 
include that information? Here is how you do this in R, 
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first by building the reduced model that lacks the fixed 
effect for modality but is otherwise identical to the full 
model (including any control parameters used), and then 
by conducting the test via the anova()11 function 
(which does not actually compute an analysis of vari-
ance, but is a convenient function for conducting a 
likelihood-ratio test):

>  rt_reduced.mod <- lmer(RT ~ 1 + (1 + 
modality|PID) + (1 + modality|stim), 
data = rt_data, control = 
lmerControl(optimizer = "bobyqa"))

> anova(rt_reduced.mod, rt_full.mod)
Data: rt_data
Models:
rt_reduced.mod: RT ~ 1 + (1 + modality|stim) 
+ (1 + modality|PID)

rt_full.mod: RT ~ 1 + modality + (1 + 
modality|stim) + (1 + modality|PID)

                          Df  AIC    BIC     logLik deviance Chisq Chi Df Pr(>Chisq)
rt_reduced 

.mod        8 302449 302513 -151217 302433
rt_full 

.mod        9 302419 302491 -151200 302401   32.385   1   1.264e-08

The small p value in the Pr(>Chisq) column indicates 
that the model including the modality effect provides a 
better fit for the data than the model without it; thus, 
the modality effect is significant. I have added boldface 
for the p value, the χ2 value in the Chisq column 
(32.385), and the degrees of freedom for the test (1, 
found in the Chisq Df column) because these three 
values should be reported in your results section (I 
return to this point below).

Given that the full model includes only one condition 
effect (modality), conducting the test is relatively 
straightforward. However, performing likelihood-ratio 
tests can quickly become a tedious task for complex 
models with many fixed effects. This is because these 
tests must be conducted on nested models, so in order 
to test a particular effect, a reduced model (sometimes 
referred to as a null model) lacking that effect needs to 
be built for comparison. Another issue with this approach 
is that although the reduced models are built solely for 
the purpose of comparison with the full model, it can 
be quite tempting to examine those intermediate models 
and consider them plausible candidates for the “best 
model” (i.e., perform stepwise regression without know-
ing it). For example, suppose you build a full model 
with two fixed effects—modality and background-noise 
level—and a reduced model to test whether the effect 
of modality is significant. In doing so, you may notice 
that noise level is significant in the reduced model but 
not in the full model and convince yourself that a model 
without modality is actually more appropriate, even 
though you had not considered this possibility before 
examining the models. This is a questionable research 

practice ( John et al., 2012) known as hypothesizing after 
the results are known (HARKing) and should be avoided 
because, as Kerr (1998) put it, HARKing transforms Type 
I error (false positives) into theory.

Luckily, the afex package has another handy function 
that allows you to avoid this practice altogether. The 
mixed() function takes a model specification as input 
and conducts likelihood-ratio tests on all fixed (but not 
random) effects in the model when the argument 
method = 'LRT' is included. Crucially, you do not see 
the reduced models that were built to obtain the relevant 
p values, so the temptation to inadvertently p-hack is 
reduced. This function is more useful when your model 
has multiple fixed effects, but here is how to implement 
the function in our example and what the output looks 
like (notice that the χ2 value is the same as when we 
used the anova() function, because both functions 
conduct likelihood-ratio tests):

>  mixed(RT ~ 1 + modality + (1 + 
modality|PID) + (1 + modality|stim), 
data = rt_data, control = 
lmerControl(optimizer = "bobyqa"), 
method = 'LRT')

Model: RT ~ 1 + modality + (1 + 
modality|stim) + (1 + modality|PID)

Data: rt_data
Df full model: 9
     Effect     df     Chisq    p.value
1 modality  1    32.39***      <.001

Interpreting fixed and random effects. The likelihood-
ratio test comparing our full and reduced models indi-
cated that the modality effect was significant, but it did not 
tell us about the direction or magnitude of the effect. So 
how do we assess whether the audiovisual condition 
resulted in slower or faster response times? And how do 
we gain insight into the variability across participants and 
items that we asked the model to estimate? To answer 
these questions, we need to examine the model output via 
the summary() command. The output contains two main 
sections: The top part contains information about random 
effects, and the bottom part contains information about 
fixed effects. The following code chunk implements the 
summary() command and shows the abbreviated output 
relevant to interpreting fixed effects:

> summary(rt_full.mod)
Fixed effects:
                     Estimate Std. Error df   t value
(Intercept) 1044.14   23.36   52.14   44.704
modality      83.18   12.58   52.10    6.615

Recall that we used a dummy-coding scheme with the 
audio-only condition as the reference level; the intercept 
therefore represents the estimated mean response time 
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in the audio-only condition, and the modality effect 
represents the adjustment to the intercept in the audio-
visual condition. Thus, response times in the audio-only 
condition averaged an estimated 1,044 ms, and response 
times were an estimated 83 ms slower in the audiovisual 
condition.

Now let us focus on the random-effects portion of the 
output:

Random effects:
Groups   Name     Variance  Std.Dev.  Corr
stim  (Intercept)     303.9     17.43
            modality       216.6      14.72    0.16
PID   (Intercept)   28552.7     168.98
            modality     7709.8       87.81     –0.17
Residual            65258.8      255.46

The Groups column lists the grouping factors that 
appeared to the right of the pipes in the model specifi-
cation (along with the residuals), and the Name column 
lists the effects that were grouped by each factor (i.e., 
the intercepts and modality slopes that appeared to the 
left of the pipes in the model specification). Each of 
these random intercepts and slopes has an associated 
variance (and standard deviation) estimate, which tells 
you the extent to which response times for particular 
stimuli and participants varied around the fixed intercept 
and slope. For example, the standard deviation for by-
item random intercepts (in boldface in the output above) 
indicates that response times for particular items varied 
around the average intercept of 1,044 ms by about 17 
ms. Similarly, the standard deviation for by-participant 
random slopes (in boldface in the output above) indi-
cates that participants’ estimated slopes varied around 
the average slope of 83 ms by about 88 ms. Thus, an 
individual whose slope was 1 SD below the mean would 
have an estimated slope near 0 (indicating that this per-
son’s response times were not affected by the modality 
in which the words were presented), whereas an indi-
vidual whose slope was 1 SD above the mean would 
have a very steep slope (indicating a difference between 
modalities of about 171 ms). The coef() function in 
lme4 provides individual intercept and slope estimates 
for every participant and item, which not only helps 
make the concept of random-intercept and -slope esti-
mates more concrete, but can also help you identify 
outliers. Here is the code and abbreviated output indicat-
ing estimates for the first four items and participants:

> coef(rt_full.mod)
$stim
             (Intercept)     modality
babe    1038.921      82.11521
back    1050.914      86.52633
bad     1041.122      81.12267
bag     1042.896      86.40601

$PID
          (Intercept)      modality
301    1024.0668     -16.936415
302    1044.1377       1.842626
303     882.8306      57.789321
304    1232.7544     -27.919775

This output indicates that the estimated intercept for 
the word “bag” is 1,043 ms, and the estimated slope is 86 
ms; these values are very similar to the estimates for the 
fixed intercept (1,044 ms) and slope (83 ms). The partici-
pant part of the output indicates that Participant 303 had 
an estimated intercept of 883 ms and an estimated slope 
of 58 ms, indicating that this person responded much 
more quickly than average and was less affected by 
modality than average. Notice that even though we are 
looking at estimates for only four items and participants, 
it is clear that there is more intercept and slope variability 
across participants than across items. The standard devia-
tions are consistent with this observation. Specifically, the 
standard deviations for the by-participant random inter-
cepts (169 ms) and slopes (88 ms) are much larger than 
those for the by-item random intercepts (17 ms) and 
slopes (15 ms). This is not surprising—in my experience, 
participants tend to vary more than items—but it is useful 
to know that participants vary considerably in their 
response times because this could have important conse-
quences for power calculations and could uncover ave-
nues for individual differences research (e.g., why do 
people vary so much in the way the modality manipula-
tion affects their response times?) and follow-up studies 
(e.g., do the results hold when one controls for individual 
differences in simple reaction time?).

Although the focus of our hypothetical study is on 
fixed effects, random-effects estimates can be interesting 
and informative in their own right, and in some cases 
provide insight into the key research question. For exam-
ple, Idemaru and colleagues (2020) recently concluded 
that loudness is a more informative cue than pitch in 
predicting whether an utterance is perceived as respect-
ful or not respectful. This claim was supported both by 
greater variation in pitch than loudness slopes across 
participants (i.e., participants responded more consis-
tently to loudness cues) and by the fact that the direction 
of the loudness effect was negative for every single 
participant (this is an example of the coef() function 
in action), but the direction of the pitch effect varied 
considerably across participants. Thus, random effects 
rather than fixed effects were at the crux of the authors’ 
argument that listeners use loudness as an indicator of 
respect more consistently than they use pitch.

The last piece of information in the random-effects 
output concerns correlations among random effects. The 
Corr column indicates that the correlation between 
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random intercepts for items and by-item random slopes 
is .16, and the correlation between random intercepts 
for participants and by-participant random slopes is −.17 
(these values have been put in boldface in the output 
above). This means that items that were responded to 
more slowly in the audio-only condition tended to have 
larger (more positive, steeper) slopes, and participants 
who responded more slowly in the audio-only condition 
had shallower slopes. One possible explanation for the 
positive correlation for items is that the items that were 
responded to more slowly tended to be the more diffi-
cult ones and may have been particularly affected by 
any distraction coming from the visual signal. The nega-
tive correlation between by-participant random inter-
cepts and slopes is consistent with the one described 
earlier in this article and may suggest that slow, deliber-
ate responding washes out the modality effect.

Finally, it is important to note that it is possible for a 
model to encounter estimation issues (i.e., produce unre-
liable parameter estimates) without any warning messages 
appearing in aggressive red text in your R console, and 
the random-effects portion of the output contains some 
clues that may help you identify when this happens. One 
clue comes from the random-effects correlations, which 
are set to −1.00 or 1.00 by default when they cannot be 
estimated, and another comes from the variance estimates, 
which are set to 0 when they cannot be estimated (i.e., 
the variance and correlation parameters are set to their 
boundary values when they cannot be estimated; Bates, 
Mächler, et al., 2015). Although random-effects correla-
tions of −1.00 or 1.00 are often accompanied by “singular 
fit” warning messages, this is not always the case, so it is 
crucial to examine the random-effects portion of the 
model output to ensure that estimation went smoothly.

Reporting results in a manuscript. There are no explicit 
rules for reporting findings from model comparisons and 
the associated parameter estimates from the preferred 
model (Meteyard & Davies, 2020). How results are reported 
depends on the number and nature of model compari-
sons, the journal submission guidelines, and author and 
reviewer preferences. That said, I typically report the χ2 
value from the likelihood-ratio test, the degrees of free-
dom of the test, and the associated p value, as well as the 
coefficient estimates, t values, and standard errors associ-
ated with the parameters of interest from the selected 
model. To report the findings described in the example 
above, you could write,

A likelihood-ratio test indicated that the model 
including modality provided a better fit for the data 
than a model without it, χ2(1) = 32.39, p < .001. 
Examination of the summary output for the full 
model indicated that response times were on 
average an estimated 83 ms slower in the audiovisual 
relative to the audio-only condition(β = 83.18,  
SE = 12.58, t = 6.62).

As long as you report your results transparently and 
include details of the model specification and any sim-
plifications you made to the random-effects structure in 
your manuscript or accompanying code, the particular 
convention you follow is up to you (and, of course, 
making your data and code publicly available reduces 
the impact of the reporting convention you adopt). 
Finally, you should be sure to cite R as well as the spe-
cific packages you used to conduct your analyses, 
including the versions you used, both to facilitate repro-
ducibility of your results (indeed, it is not uncommon 
for a model that once converged to no longer converge 
with an lme4 update) and to give credit to the package 
developers who have put a lot of work into making your 
analyses possible.

Interpreting interactions. The data set we have been 
working with throughout this Tutorial contains just one 
condition effect. Although this simplicity is convenient for 
learning about mixed-effects models, many experiments 
test multiple conditions and the interactions among them. 
Interpreting interactions is tricky, and doing so accurately 
depends critically on knowledge of the coding scheme 
used for categorical predictors. R’s default (and usually my 
own) is to use dummy coding, which leads to misinterpre-
tation of interactions and lower-order effects if sum cod-
ing is assumed to be the default. Therefore, for this section, 
I continue to use dummy-coded predictors. The example 
I provide uses the same data set we have been working 
with, but contains one additional categorical predictor 
representing the difficulty of the background-noise level. 
Participants identified speech in audio-only (coded 0) and 
audiovisual (coded 1) conditions in both an easy (coded 
0) and a hard (coded 1) level of background noise. The 
goal of this analysis is to assess whether the effect of 
modality on response time depends on (i.e., interacts with) 
the level of the background noise (i.e., the signal-to-noise 
ratio, or SNR). On the basis of previous research, we 
expect that response times will be slower in the audio-
visual condition (as in the analyses above), but that this 
slowing will be more pronounced in easy listening condi-
tions because the cognitive costs associated with simulta-
neously processing auditory and visual information are 
amplified in conditions in which seeing the talker is 
unnecessary to attain a high level of performance (see 
Brown & Strand, 2019).

There are a few ways to specify an interaction in R 
that produce identical results. One way is to use an 
asterisk (modality*SNR), which automatically 
includes all lower-order terms even if you do not type 
them in (the following syntax is abbreviated for read-
ability, but random effects and control parameters are 
also included; see the accompanying code at https://osf 
.io/v6qag/):

> rt_int.mod <- lmer(RT ~ 1 + modality* 
SNR + . . ., data = rt_data_interaction)

β

https://osf.io/v6qag/
https://osf.io/v6qag/
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Another way to specify an interaction is to use a colon 
rather than an asterisk (modality:SNR), but in this 
case, you need to explicitly specify the lower-order 
terms in the model specification (I use this method for 
clarity):

> rt_int.mod <- lmer(RT ~ 1 + modality 
+ SNR + modality:SNR + . . .,

data = rt_data_interaction)

Here is the abbreviated model output:

Fixed effects:
                       Estimate  Std. Error    df   t value
(Intercept)  998.824    22.214     52.729 44.964
modality      98.510    13.199     59.065  7.464
SNR           92.339    14.790     58.004  6.243
modality:SNR -29.532     6.755  21298.850 -4.372

Recall that the intercept represents the estimated 
response time when all other predictors are set to 0. The 
intercept of 999 ms therefore represents the estimated 
mean response time in the audio-only modality (modal-
ity = 0) in the easy listening condition (SNR = 0). If you 
are having difficulty understanding why this is the case, 
it may be helpful to plug in 0 for both modality and SNR 
in the following regression equation. Notice that the 
intercept is the only term that does not drop out:

RT 999 99 modality 92 SNR 3 modality SNR

999 99 92 3

= + +
= + +

* * * *

* *

−
−

0

0 0 0 ** *0 0

= 999

To interpret the remaining three coefficients, it is 
important to note that when an interaction is included 
in a model, it no longer makes sense to interpret the 
predictors that make up the interaction in isolation. This 
means that the coefficient for the modality term should 
not be interpreted as the average modality effect if SNR 
is held constant (this would be the interpretation if we 
had not included an interaction in the model), because 
the presence of the interaction tells us that the modality 
effect changes depending on the SNR. Instead, the coef-
ficient for the modality term should be interpreted as 
the estimated change in response time from the audio-
only to the audiovisual condition when all other predic-
tors are set to 0. Thus, the modality effect indicates that 
response times are on average 99 ms slower in the audio-
visual relative to the audio-only condition in the easy 
listening condition (SNR = 0). Think of it this way: When 
the SNR dummy code is set to 0 (easy), the SNR and 
interaction terms drop out of the model, and we are left 
with a 99-ms adjustment to the intercept when we move 
from the audio-only to the audiovisual condition. How-
ever, when the SNR dummy code is set to 1 (hard), those 
terms do not drop out of the model, and it is no longer 
accurate to say that the modality effect is 99 ms (again, 

plugging 0s and 1s into the regression equation above 
may help you here).

Similarly, the SNR effect indicates that response times 
are on average 92 ms slower in the hard relative to the 
easy listening condition, but this applies only when the 
modality dummy code is set to 0 (representing the 
audio-only condition). The modality and SNR effects I 
have just described are called simple effects, but are often 
misinterpreted as main effects. Simple effects represent 
the effect of a predictor on an outcome at a particular 
level of another predictor, whereas main effects repre-
sent the average effect of a predictor on an outcome 
across levels of another predictor. Thus, when an inter-
action is present and you have used a coding scheme 
centered on 0 (e.g., sum coding), lower-order effects are 
considered main effects, but if you have used a dummy-
coding scheme, they are simple effects. Keep this com-
mon misinterpretation in mind any time you use dummy 
coding.

Just as the modality and SNR effects can be thought 
of as adjustments to the intercept in particular conditions 
(e.g., estimates are shifted up 99 ms in the audiovisual 
relative to the audio-only condition, but only in the easy 
listening condition), the interaction term can be thought 
of as an adjustment to the modality or SNR slope when 
both predictors are set to 1 (note that interactions adjust 
coefficient estimates only for a single cell of the design 
because the interaction term drops out when one or 
both of the predictors are set to 0). In this example, the 
coefficient for the modality term indicates that the modal-
ity effect is 99 ms when the SNR is easy, but the presence 
of an interaction tells us that the effect of modality differs 
depending on the level of the background noise; that is, 
the modality slope needs to be adjusted when the SNR 
is hard. Specifically, the negative interaction term indi-
cates that the modality slope is 30 ms lower (less steep) 
when the SNR is hard, which is consistent with the 
hypothesis I described above: Seeing the talker slows 
response times, but it does so to a greater extent when 
the listening conditions are easy, presumably because 
the visual signal is distracting and unnecessary when 
the auditory signal is highly intelligible. Note that inter-
actions are symmetric in that if the modality slope varies 
by SNR, then the SNR slope varies by modality. You can 
therefore also interpret the interaction term as an adjust-
ment to the SNR slope: The 92-ms SNR effect is 30 ms 
weaker in the audiovisual condition. If you are struggling 
to interpret interactions with dummy-coded predictors, 
I recommend making a table containing the coefficient 
estimate for each of the cells in the design by plugging 
all combinations of 0s and 1s into the regression equa-
tion (Table 2); this can help you visualize the role of 
each individual coefficient estimate in generating cell-
wise predictions (see also Winter, 2019).
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Analyzing data with a binary outcome 
(identification accuracy)

Now you should have a general understanding about 
how to build and interpret models in which the outcome 
is continuous (e.g., response time), but what if you 
wanted to test for an effect of modality on accuracy at 
identifying words, when accuracy for each trial is scored 
as 0 or 1? These values are discrete and bounded by 0 
and 1, so you need to use generalized linear mixed-
effects models; if we instead modeled this discrete out-
come assuming a continuous outcome, the model would 
generate impossible predictions (e.g., a predicted prob-
ability of −0.2 or 1.3). The R code for building these 
kinds of models is almost exactly the same as that 
described above, except rather than using the lmer() 
function you use the glmer() (generalized linear 
mixed-effects regression) function, and you need to 
include at least one additional argument within the 
glmer() function indicating the assumed distribution 
of the dependent variable. The glmer() function also 
contains an argument for specifying a link function, 
which transforms the outcome into a continuous and 
unbounded scale, but each family of distributions has a 
default link function that typically does not need to be 
changed. In this case, the discrete outcomes of 0 and 1 
follow a binomial distribution, which should be modeled 
with logistic regression, typically using a logit link func-
tion (the default). The logit link function transforms 
probabilities, which are bounded by 0 and 1, into a 
continuous, unbounded scale (log odds). Using the logit 
link function allows us to model the linear relationship 
between the predictors and the log odds of the outcome 
(which can be transformed back into odds and probabili-
ties for ease of interpretation) without generating non-
sensical predictions.

Put simply, the logit link function first transforms 
probabilities, which are bounded by 0 and 1, into odds, 
which are bounded by 0 and infinity (a probability of 0 
corresponds to odds of 0, and a probability of 1 corre-
sponds to odds of infinity). However, this scale still has 
a lower bound of 0, so the link function takes the natural 
logarithm of the odds (the logarithm of 0 is negative 
infinity, so the lower bound of the scale is extended from 
0 to negative infinity), which results in the continuous 
and unbounded log-odds scale. Using this function 

means that any predictions generated from the model 
will also be on a log-odds scale, which is not particularly 
informative, but luckily, these predictions can be expo-
nentiated to put them back on an odds scale, and the 
odds can then be converted into probabilities (see Jae-
ger, 2008, for a tutorial on using logit mixed models).

Here is the code to build the full model:

>  acc_full.mod <- glmer(acc ~ 1 + 
modality + (1 + modality|PID) +  
(1 + modality|stim), data = acc_data, 
family = binomial)

This code is very similar to that for the response time 
analysis, but it contains a few key differences. First, the 
dependent variable is acc (0 for incorrect and 1 for 
correct word identification) rather than RT. Because this 
outcome is binomially distributed, we indicate that we 
are using generalized linear mixed-effects modeling by 
using the glmer() function, and we indicate that our 
dependent variable follows a binomial distribution with 
the additional parameter family = binomial.

This model converged, but remember that you should 
always examine the random-effects portion of the output 
to ensure that estimation went smoothly:

> summary(acc_full.mod)
Random effects:
Groups   Name     Variance Std.Dev. Corr
stim (Intercept) 0.72085  0.8490
            modality    0.46663  0.6831    -0.06
PID  (Intercept) 0.04346  0.2085
            modality    0.04903  0.2214    -0.15

Not only did we not encounter any convergence or 
singularity warnings, but the variance estimates and esti-
mated correlations among random effects seem reason-
able (i.e., the variance estimates are not exactly zero, 
and the correlations are not −1.00 or 1.00). It is slightly 
unusual that in this data set there is more variability 
across items than across participants in both intercepts 
and slopes, but this may simply reflect the fact that the 
speech-identification task was relatively easy for most 
participants, which resulted in little variability.12

Next, we will build a reduced model lacking modality 
as a fixed effect so we can conduct a likelihood-ratio test:

> acc_reduced.mod <- glmer(acc ~ 1 +  
(1 + modality|PID) + (1 + 
modality|stim), data = acc_data, 
family = binomial)

It is important to note that although both the full and 
reduced models converged with this random-effects 
structure and no control parameters, it is certainly pos-
sible (and indeed not uncommon) for the full model to 
converge but the reduced model to encounter conver-
gence issues. In this case, you should find a random-
effects structure and combination of control parameters 

Table 2. Estimates for All Cells in the 2 × 2 Design When 
the Model Includes an Interaction Term

Signal-to-noise ratio

Modality

Audio-only 
condition (0)

Audiovisual  
condition (1)

Easy (0) 999 999 + 99
Hard (1) 999 + 92 999 + 99 + 92 − 30
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that enable both models to converge (e.g., via the all_
fit() function in the afex package), because the mod-
els being compared via a likelihood-ratio test should be 
nested and built with the same control parameters. That 
is, the models should be identical except for the pres-
ence of the fixed effect of interest. Here is the code and 
output for the likelihood-ratio test:

> anova(acc_reduced.mod, acc_full.mod)
Data: acc_data
Models:
acc_reduced.mod: acc ~ 1 + (1 +  
modality | PID) + (1 + modality | stim)

acc_full.mod: acc ~ 1 + modality +  
(1 + modality | PID) + (1 + modality | stim)

                         npar   AIC   BIC   logLik deviance Chisq      Df Pr(>Chisq)
acc_reduced 
.mod         7   28147 28205 -14067  28133
acc_full 
.mod               8   27989   28055 -13986   27973   160.78 1      < 2.2e-16

The small p value indicates that the full model pro-
vides a better fit for the data than the reduced model, 
and thus that modality has a significant effect on spoken-
word identification accuracy.

Conclusions

Mixed-effects modeling is becoming an increasingly 
popular method of analyzing data from experiments in 
which each participant responds to multiple items—and 
for good reason. The beauty of mixed-effects models is 
that they can simultaneously model participant and item 
variability while being far more flexible and powerful 
than other commonly used statistical techniques: They 
handle missing observations well, they can seamlessly 

include continuous predictors, they provide estimates 
for average (as well as by-participant and by-item) 
effects of predictors on the outcome, and they can be 
easily extended to model categorical outcomes.

However, as Uncle Ben once said to Spider-Man, with 
great power comes great responsibility (Lee & Ditko, 
1962). These models can be easily implemented in R 
without cost, but it is important that researchers ensure 
that this powerful tool is used correctly. Indeed, although 
more and more researchers are implementing mixed-
effects models, there is a concerning lack of standards 
guiding implementation and reporting of these models 
(Meteyard & Davies, 2020). Many analytic decisions must 
be made when using this statistical technique. Consider, 
for example, the number of options available to the 
researcher if a model fails to converge. This results in a 
massive number of “forking paths” (Gelman & Loken, 
2014) that the researcher may embark upon to obtain 
statistically significant results. Given the considerable 
number of choices a researcher may make during data 
analysis (i.e., researcher degrees of freedom; Simmons 
et al., 2011), it is important that these models be used 
carefully and reported transparently (see Meteyard & 
Davies, 2020, for an example of how models and results 
should be reported).

The goal of this article is to serve as an accessible, 
broad overview of mixed-effects modeling for research-
ers with minimal experience with this type of modeling. 
I have focused on what mixed-effects models are, what 
they offer over other analytic techniques, and how to 
implement them in R. Table 3 lists helpful links, as well 
as additional resources for readers interested in more 
in-depth descriptions of particular topics.

Table 3. Helpful Links and Additional Resources

Helpful links Additional resources

R (R Core Team, 2020) for Macs: https://cran 
.r-project.org/bin/macosx/

An excellent introduction to linear models and mixed-effects modeling for 
individuals with limited statistical experience: Winter (2013)

R (R Core Team, 2020) for Windows: https://
cran.r-project.org/bin/windows/base/

An introduction to analyzing eye-tracking data with mixed-effects 
modeling: Barr (2008)

RStudio (RStudio Team, 2020): https://www 
.rstudio.com/products/rstudio/download/

An argument in favor of utilizing the maximal random-effects structure 
justified by the design (within reason): Barr et al. (2013)

swirl package for learning R in R (Kross et al., 
2020): https://swirlstats.com/

An argument in favor of using parsimonious mixed models: Bates et al. 
(2015)

Wickham and Grolemund’s (2017) R for Data 
Science book: https://r4ds.had.co.nz/index.html

A model-selection approach to selecting random-effects structures: 
Matuschek et al. (2017)

Franke and Roettger’s (2019) brms tutorial: https://
psyarxiv.com/cdxv3

Descriptions of mixed models with crossed random effects for participants 
and items: Baayen et al. (2008), Quené and van den Bergh (2008)

 Overviews of design types and statistical power for analyzing data with 
mixed-effects models: Judd et al. (2017), Westfall et al. (2014)

 Description of logit mixed models: Jaeger (2008)
 Descriptions of how to extend mixed-effects modeling to growth-curve 

analysis: Mirman et al. (2008), Mirman (2014)
 Introduction to modeling other nonlinear effects (e.g., linguistic change) 

and implementing general additive modeling: Winter and Wieling (2016)

https://cran.r-project.org/bin/macosx/
https://cran.r-project.org/bin/macosx/
https://cran.r-project.org/bin/windows/base/
https://cran.r-project.org/bin/windows/base/
https://www.rstudio.com/products/rstudio/download/
https://www.rstudio.com/products/rstudio/download/
https://swirlstats.com/
https://r4ds.had.co.nz/index.html
https://psyarxiv.com/cdxv3
https://psyarxiv.com/cdxv3
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Notes

1. It is important to note that the examples in this Tutorial concern 
crossed rather than nested random effects (mixed-effects models 
with nested random-effects structures are typically referred to 
as hierarchical linear models). Random effects (defined later) 
of participants and items are considered crossed when every 
participant responds to every item and nested when every par-
ticipant responds to a different set of items. The classic exam-
ple of nested random effects comes from education research 
in which students are nested within classes, which in turn are 
nested within schools (see Raudenbush, 1988). The motivation 
for using mixed modeling applies to both design types, but the 
examples and R code I provide assume a crossed design (see 
Baayen et al., 2008; Judd et al., 2017; Quené & van den Bergh, 
2008; Westfall et al., 2014, for more on the distinction between 
crossed and nested designs).
2. Note that this is not literally how parameters in mixed-effects 
models are estimated. Those details are beyond the scope of this 
Tutorial, and this simplified description is provided to help you 
conceptualize what mixed models are doing behind the scenes. 
See Snijders and Bosker (2012) for more detail.

3. Note that including by-item random slopes might be unjus-
tified even when the conditions are not defined by stimulus-
intrinsic properties. For example, if you are interested in the 
effect of background noise on response times to words, but 
different words are assigned to different conditions (each word 
appears in only one level of noise), it would not be justified to 
include by-item random slopes. It is therefore crucial to consider 
your experimental design before building mixed-effects models.
4. R Markdown is a file format that is easily accessed via RStudio 
and incorporates plain text, code, and R output.
5. The corresponding code for a nested random-effects structure 
in which classes are nested within schools is
>  lmer(outcome ~ 1 + predictor + (1|school/
class), data = data)

6. When you are creating a mixed-effects model like this one, R 
uses maximum likelihood estimation to compute the values of 
the parameters that maximize the likelihood of the data given 
the structure that you specify for the model (see Etz, 2018, for an 
approachable introduction to the concept of likelihood).
7. Response time data should really be analyzed with generalized 
linear mixed-effects models (discussed in the section on analyz-
ing binomial data) assuming, for example, an inverse Gaussian 
distribution and an identity link function because response times 
tend to be positively skewed (Lo & Andrews, 2015). For sim-
plicity, however, we will use general linear mixed models via 
the lmer() function; the parameter estimates change a bit with 
generalized mixed modeling, but the conclusions do not change. 
Mixed modeling is quite robust to violations of the normality 
assumption, so it is acceptable to use general mixed models here.
8. Note that convergence issues are far less common in Bayesian 
mixed models than in frequentist mixed models (lme4 falls into 
the frequentist category), so if you find yourself struggling with 
convergence issues, you might consider switching to a Bayesian 
framework. For individuals who are comfortable using lme4, 
this switch is made easy by the brms package (Bürkner, 2017) 
because this package uses lme4 formula syntax but Bayesian sta-
tistics behind the scenes. This Tutorial uses lme4 only, but inter-
ested readers may want to refer to Franke and Roettger’s (2019) 
helpful tutorial on how to use brms (https://psyarxiv.com/cdxv3).
9. A situation in which you may not be willing to assume the 
correlation is zero is when that correlation is a crucial part of 
your research question. For example, if your research question 
addresses whether people with slower overall response times 
tend to be less affected by modality, then it would be critical to 
allow the model to estimate the correlation between the random 
effects. However, a typical study in experimental psychology 
is more interested in the fixed-effects parameter estimates, so 
assuming the correlation is zero is often acceptable. The code 
to examine the confidence interval around standard deviation 
and correlation estimates is confint(rt_full.mod, parm = 
"theta_", oldNames = F). The parm parameter indicates 
which parameters in the model will be given confidence inter-
vals, and setting the oldNames parameter to FALSE (F) simply 
gives the output more interpretable names.
10. If you examine the summary output for a mixed-effects model, 
you may notice that the lmer() function does not include p 
values. This is because the null distribution is unknown (the 
error structure in multilevel models is complex, and the degrees 
of freedom cannot be calculated). Bates, one of the creators of 
the lme4 package and the person who wrote the lmer() func-
tion, has posted a helpful description of why he did not include  

https://osf.io/v6qag/
https://osf.io/v6qag/
http://www.psychologicalscience.org/publications/badges
http://www.psychologicalscience.org/publications/badges
https://orcid.org/0000-0001-5310-6499
https://psyarxiv.com/cdxv3
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p values in that function (see Bates, 2006). You can obtain p val-
ues by loading the lmerTest package (Kuznetsova et al., 2017), 
but I recommend using likelihood-ratio tests instead.
11. Note that if you are testing only random effects, you should 
include the argument refit = FALSE in the anova() com-
mand. This is because lme4 automatically refits the models using 
maximum likelihood (ML) estimation when you conduct a likeli-
hood-ratio test via the anova() command, but this is necessary 
only when testing fixed effects. This default is in place to make 
it really difficult to test fixed effects when the models have been 
built using the default estimation procedure in lme4 (restricted 
maximum likelihood estimation, or REML), as this method is 
not appropriate for comparing models differing in fixed effects. 
However, you should override the default by including refit = 
FALSE if you are testing random effects.
12. The experiment on which these data are based also included 
an SNR manipulation whereby each word in the data set 
occurred in both audio-only and audiovisual conditions at both 
a very easy and a moderate SNR. I have ignored the SNR vari-
able for simplicity, but the relatively easy SNRs in which the 
words were presented may explain why accuracy was high for 
all participants.
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